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Cosmological studies based on the number counts of galaxy clusters are — or soon will be — limited by systematics, not statistics. The dominant source of uncertainty
is a bias and scatter in the determination of total mass. A major contribution of Constellation-X to this field is twofold. First, low-scatter Mtot proxies can be provided by
snapshot observations of complete samples of high-redshift clusters. Second, biases in the Mtot determination can be determined by detailed observations of representative
cluster subsamples.

1 Mass accuracy requirements

Fig. 1.— The mass function for two redshifts, z = 0.05 (solid) and z = 1 (dashed), and for σ8 = 0.8 and
0.75 (top and bottom, respectively) shows strong evolution with redshift, steep dependence on mass, and
exponential sensitivity to the amplitude of matter density perturbations at a given mass scale.

Using counts of galaxy clusters as a tool for cosmological studies is based on the
exceptional sensitivity of the cluster number density to the amplitude of the linear
density perturbations. Evolution of the cluster number density at high redshifts con-
strains the growth of density perturbations which, together with the distance-redshift
relation, is a prime dark energy observable [1]. Ideally, a large cluster survey can
provide very tight constraints on the dark energy equation of state [2] but the require-
ments for the accuracy of the total mass measurements are stringent.

Theoretical models for the mass function of dark matter halos in all variants of
CDM cosmology are well-developed and accurately calibrated by numerical simula-
tions [3, 4, 5, 6]. The models show that the comoving number density of clusters
is a steep function of mass and is exponentially sensitive to the amplitude of matter
density perturbations at the given mass scale (Fig. 1). The mass function is usefully
characterized by two numbers, the local power law slope, α, and the sensitivity of the
cluster number density, γ, to the amplitude of linear density perturbations, σ(M), on
scale M:

N(>M) ∝ M−α , γ =
d ln N(>M)

dσ(M)
, (1)

The values of these quantities computed for a typical combination of the cosmological
parameters are given in Table 1.

Table 1 Mass Function Parameters for Default ΛCDM Cosmology

z = 0.05 z = 1

M, h−1 M� α γ σ α γ σ

1 × 1014 1.70 3.6 0.87 2.95 15.8 0.55

2 × 1014 2.04 5.8 0.76 3.71 23.5 0.48

4 × 1014 2.65 10.0 0.64 4.89 37.4 0.40

6 × 1014 3.13 13.8 0.58 5.80 49.2 0.36

1.1 Requirements for systematic biases

Using α and γ we write simple expressions for the uncertainties in the amplitude of
perturbations measured from a cluster sample of size N,
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where the two terms represent the Poisson noise and contribution from a systematic
mass measurement bias. Statistical errors dominate if

∆M/M < (α
√

N)−1 . (3)

For example, for N = 1000 and α = 2.65 (corresponding to a mass threshold of
4×1014 h−1 M� at z = 0), ∆M/M < 1.2%. Similarly, for N = 50 clusters and α = 4.9
(typical parameters for z = 1), ∆M/M should be smaller than 3%. Note that for
growth factor measurements, the requirements for ∆M/M are mostly for relative cal-
ibration of the high- and low-z measurements (i.e., both can have small bias as long
as the bias is redshift-independent).

If these requirements are satisfied and thus uncertainties are dominated by Poisson
statistics, not systematics, σ(M) can be measured quite accurately, ∆σ ∼ (γ

√
N)−1 ,

which gives ∆σ = 0.0032 with 1000 clusters at z = 0 (assuming γ ≈ 10 which
corresponds to a mass threshold of 4 × 1014 h−1 M� , Table 1).

1.2 Requirements for individual mass measurements

Even in the absence of systematic biases, measurement scatter in mass estimates for
individual objects can affect the derived cluster number densities [7]. The effect of
the scatter is to smooth the mass function model with a kernel. For a power law mass
function and for a log-normal distribution of the mass estimates with constant scatter,
δln M , the power law slope is not affected, but its normalization is increased by a factor

bias due to scatter = exp(α2δ2ln M /2) (4)

If the scatter is known a priori, the resulting bias can be corrected. However, if
δln M >

√
2/α, the effect can become uncontrollably large. The requirement for indi-

vidual mass measurements is then

δM/M � 1/α, (5)

which corresponds to ≈ 20% accuracy for a mass threshold of 4 × 1014 h−1 M� at
z = 1.

Random scatter in mass can be both statistical and intrinsic, the latter representing,
e.g., scatter in a mass-observable relation. The statistical component is easy to esti-
mate. Intrinsic scatter is a more serious problem if not known a priori (which is usu-
ally the case). Its internal estimates are limited by the sample size, ∆δ2 = δ2 (2/N)1/2 ,

and so the resulting number density uncertainty is smaller than the Poisson error if
1/
√

N > ∆δ2 α2/2 = δ2α2 (2/N)1/2/2 (we expand (4) assuming α2δ2ln M /2 � 1), or

δM/M < 21/4/α, (6)

i.e. approximately the same requirement as eq.(5).

To summarize, the typical tolerance for mass measurements is 20%− 30% for in-
dividual objects, and a few percent for redshift-dependent systematic biases. If these
requirements are met, the statistical accuracy of samples of ∼ 100 clusters in sev-
eral redshift intervals provides interesting constraints on the dark energy equation of
state. The required accuracies can be achieved via the survey “self-calibration” or by
obtaining high-quality data for each object.

2 Self-calibration

Large-area cluster surveys provides several statistically independent but theoretically
degenerate sources of information:

• the distribution of the number of detected clusters as a function of redshift,
dN/dz;

• the distribution as a function of mass at each redshift, dN/dM;

• the correlation function of the spatial distribution of detected clusters. ξ(r).

Large surveys are so powerful statistically that the cosmological parameters can be
constrained with, e.g., only dN/dz and the rest of information is used to calibrate the
cluster mass scale [2, 7]. This process is referred to as self-calibration.

The ability for self-calibration quickly degrades if there is a large scatter between
the cluster mass and raw observable [7], which is the case, e.g., in the Mtot − Lx

relation or in the relation between Mtot and the peak SZ signal [8].
One obvious solution is to use a sample selection based on a low-scatter proxy for

Mtot , such as the cluster temperature. Large effective area of Constellation-X makes
it possible to measure Tx to ∼ 10% accuracy with ∼ 1 ksec exposures. Therefore, it
is feasible to reobserve all distant clusters detected in surveys such as SPT, or Plank,
or a 10,000–20,000 deg2 X-ray survey of moderate sensitivity.

3 Mass calibration via weak lensing

Weak lensing is an attractive method to determine Mtot in galaxy clusters. There are
limitations to this method related to both the observing capabilities (seeing, field of
view, foreground bright objects), and more fundamental problems such as a small
number of background galaxies behind distant clusters and more seriously, projection
of large-scale filamentary structure ([9] and later work).

These problems limit the accuracy of the weak lensing measurements for individ-
ual objects. However, they should average out when the results for a large number of
objects are combined. Therefore, the absolute mass scale can, in principle, be cali-
brated by stacking analysis of the weak lensing sheer for clusters with a given value
of an Mtot proxy. Just as for self-calibration, using low-scatter proxies provided by
Constellation-X observations would be a great advantage.

4 High-quality Mtot proxies

r500r2500

0 500 1000
0

2

4

6

T
,k

eV

r, kpc
Fig. 2.— Chandra temperature profile of the z = 0.057 cluster A133. Such temperature measurements

are sufficient for hydrostatic Mtot estimate within r500 with a 9% uncertainty. This kind of data quality
will be achievable with Con-X for high-redshift clusters.

High-quality X-ray observations provide multiple observables for galaxy clusters. In
addition to the total luminosity, Lx , and average temperature, Tx , the spatially resolved
spectral data provides the profiles of density and temperature of the intracluster gas.
For dynamically relaxed clusters, ρgas(r) and T (r) give Mtot via the hydrostatic equi-
librium equation. For example, the quality of the T (r) measurement shown in Fig.2 is
sufficient to determine Mtot with a 9% uncertainty near r500 .

The hydrostatic mass estimates cannot be applied for non-relaxed clusters. How-
ever, ρgas(r) and T (r) still can be combined into high-quality Mtot proxies. One ex-
ample, YX , is designed to approximate the integrated Sunyaev-Zeldovich signal from
the cluster. SZ signal is proportional to the so called Y-parameter,

YSZ ∝
∫
ρgas T dV, (7)

that represents the total thermal energy of the ICM and is expected to have a tight
correlation with Mtot if integrated within a sufficiently large radius [8]. Numerical
experiments show that Y-parameter is an Mtot proxy because it is relatively unaffected
by non-gravitational energy sources and sinks (ICM cooling, galaxy formation, SN
explosions) and the YSZ − Mtot relation stays close to the self-similar prediction [10],

Mtot ∝ E(z)−2/5 Y3/5
SZ , (8)

even when non-gravitational process are in the full swing and the cosmological back-
ground is non-self-similar (e.g., between z = 0.5 and z = 0 in the standard ΛCDM).

Fig. 3.— Relation between the YX parameter and Mtot for volume-limited cluster samples from numer-
ical simulations. Red and blue symbols are for simulation outputs at z = 0 and z = 0.6, respectively.
Relation was “de-evolved” using the expected self-similar evolution (eq.8). Dotted lines show 10% devi-
ations about the mean relation. (From Kravtsov et al., in prep.

The Y-parameter is “observed” directly through the thermal SZ effect in the radio
but not in the X-rays. However, the spatially resolved X-ray measurements can be
combined into the X-ray equivalent of eq. 7,

YX ≡ Mgas Tspec , (9)

where Mgas is derived from the X-ray surface brightness assuming spherical sym-
metry, and Tspec is from the single-temperature fit to the integrated X-ray spectrum.
Numerical simulations show (Fig.3)that YX performs similarly or better than YSZ as
an Mtot proxy — there is a low (< 10%) scatter in the scaling relation, even for
very non-relaxed clusters, and the evolution with z follows the self-similar prediction
(eq. 8). Detailed discussion of YX as an Mtot proxy will be presented in Kravtsov et
al. (in preparation).

Using high-quality Mtot proxies, i.e. those that are

• well-justified theoretically;

• stable with respect to details of the ICM physics;

• straightforwardly derived from the data;

• reliably computed in the simulations;

alleviates the need for self-calibration in a cluster survey and thus provides an alterna-
tive strategy for realization of the cosmological tests based on the growth of structure.

5 Calibration of numerical simulations
Galaxy clusters are unique astronomical objects in the sense that they can be “com-
puted” ab initio in the computer models. Current codes are highly accurate and
sophisticated, and their output clusters often looks remarkably realistic. Numeri-
cal simulations can be used to study how accurately cluster properties are recovered
from the data; to estimate selection biases; to provide full theoretical foundation for
mass estimators such as YSZ or YX , and so on. Even the ability of cluster surveys to
self-calibrate is, ultimately, to be demonstrated using large-volume numerical experi-
ments.

If numerical computations are employed in the cosmological work, the simulated
clusters should be sufficiently realistic. Constellation-X can provide cosmology-
independent data such as the profiles of gas temperature and metallicity, and the shape
of ρgas(r), which can be used to verify that the simulations indeed produce realistic
clusters at all redshifts.

6 Conclusions
The distance-redshift relation and the growth of density perturbations are two prime
dark energy observables. Clusters are highly effective in constraining the growth of
structure because their number density as a function of mass is strongly (exponen-
tially) sensitive to the amplitude of density perturbations. However, the strong sensi-
tivity of the cluster number density to the underlying cosmology also implies that the
test is sensitive to systematic errors in the mass determination. Thus, the full statis-
tical power of large cluster samples can be exploited only if any systematic biases in
the mass scale are less than a few percent.

Constellation-X will not be able to find large numbers of distant clusters due to
its narrow field of view. However, Con-X can contribute enormously by providing
high-quality data for distant clusters detected in the wide-area X-ray or SZ surveys.
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